Direct Nanoscale Imaging of Evolving Electric Field Domains in Quantum Structures

نویسندگان

  • Rudra Sankar Dhar
  • Seyed Ghasem Razavipour
  • Emmanuel Dupont
  • Chao Xu
  • Sylvain Laframboise
  • Zbig Wasilewski
  • Qing Hu
  • Dayan Ban
چکیده

The external performance of quantum optoelectronic devices is governed by the spatial profiles of electrons and potentials within the active regions of these devices. For example, in quantum cascade lasers (QCLs), the electric field domain (EFD) hypothesis posits that the potential distribution might be simultaneously spatially nonuniform and temporally unstable. Unfortunately, there exists no prior means of probing the inner potential profile directly. Here we report the nanoscale measured electric potential distribution inside operating QCLs by using scanning voltage microscopy at a cryogenic temperature. We prove that, per the EFD hypothesis, the multi-quantum-well active region is indeed divided into multiple sections having distinctly different electric fields. The electric field across these serially-stacked quantum cascade modules does not continuously increase in proportion to gradual increases in the applied device bias, but rather hops between discrete values that are related to tunneling resonances. We also report the evolution of EFDs, finding that an incremental change in device bias leads to a hopping-style shift in the EFD boundary--the higher electric field domain expands at least one module each step at the expense of the lower field domain within the active region.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electron States and Light Absorption in Strongly Oblate and Strongly Prolate Ellipsoidal Quantum Dots in Presence of Electrical and Magnetic Fields

In framework of the adiabatic approximation the energy states of electron as well as direct light absorption are investigated in strongly oblate and strongly prolate ellipsoidal quantum dots (QDs) at presence of electric and magnetic fields. Analytical expressions for particle energy spectrum are obtained. The dependence of energy levels' configuration on QD geometrical parameters and field int...

متن کامل

Representation of a nanoscale heterostructure dual material gate JL-FET with NDR characteristics

In this paper, we propose a new heterostructure dual material gate junctionless field-effect transistor (H-DMG-JLFET), with negative differential resistance (NDR) characteristic. The drain and channel material are silicon and source material is germanium. The gate electrode near the source is larger. A dual gate material technique is used to achieve upward band bending in order to access n-i-p-...

متن کامل

اثر میدان الکتریکی بر روی نقطه کروی کوانتومی GaAs/AlAs با ناخالصی هیدروژنی جایگزیده در مرکز

 In this research, the effect of the uniform electric field on the ground-state of a centered hydrogenic donor impurity in a GaAs/AlAs spherical quantum dot was studied using infinite potential model. In presence of strong electric field, due to the stark effect (perturbing electric field), the ground state energy would increase linearly. In presence of weak electric fields, the normalized bind...

متن کامل

Electronic and Optical Properties of the Graphene and Boron Nitride Nanoribbons in Presence of the Electric Field

Abstract: In this study, using density functional theory and the SIESTA computationalcode, we investigate the electronic and optical properties of the armchair graphenenanoribbons and the armchair boron nitride nanoribbons of width 25 in the presence of atransverse external electric field. We have observed that in the absence of the electricfield, these structures are se...

متن کامل

Deep-subwavelength imaging of both electric and magnetic localized optical fields by plasmonic campanile nanoantenna

Tailoring the electromagnetic field at the nanoscale has led to artificial materials exhibiting fascinating optical properties unavailable in naturally occurring substances. Besides having fundamental implications for classical and quantum optics, nanoscale metamaterials provide a platform for developing disruptive novel technologies, in which a combination of both the electric and magnetic rad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014